OBJECTIVE MATHEMATICS Volume 2 Descriptive Test Series

Prof. M. L. Khanna Bhushan Muley

CHAPTER-13 : DETERMINANTS

UNIT TEST-1

1. Let $\quad D_{k}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$.If $\sum_{k=1}^{n} D_{k}=96$, then n is equal to \qquad .
2. The number of matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where a, b, $c, d \in\{-1,0,1,2,3 \ldots ., 10\}$, such that $A=A^{-1}$ is
\qquad .
3. Let p and $p+2$ be prime numbers and let

$$
\Delta=\left|\begin{array}{ccc}
p! & (p+1)! & (p+2)! \\
(p+1)! & (p+2)! & (p+3)! \\
(p+2)! & (p+3)! & (p+4)!
\end{array}\right|
$$

Then the sum of the maximum values of α and β, such that p^{α} and $(p+2)^{\beta}$ divide Δ, is \qquad .
4. Consider a matrix $A=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right]$, where α, β, γ are three distinct natural numbers. If
$\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))))}{(\alpha-\beta)^{16}(\beta-\gamma)^{16}(\gamma+\alpha)^{16}}=2^{32} \times 3^{16}$, then the number of such 3-tuples (α, β, γ) is \qquad -.
5. The system of equations $2 x+y=4,3 x+2 y=2$, $x+y=-2$, has \qquad -.
(a) Infinitely many solution
(b) No solution
(c) One solution
(d) Only 2 solutions
6. For real numbers α and β consider the following system of linear equations :
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$. If the system has infinite solutions, then $\alpha+\beta$ is equal to \qquad .
7. If the following system of linear equations

$$
\begin{aligned}
& 2 x+y+z=5 \\
& x-y+z=3 \\
& x+y+a z=b
\end{aligned}
$$

has no solution, then :
(a) $a=-\frac{1}{3}, b \neq \frac{7}{3}$
(b) $a \neq-\frac{1}{3}, b=\frac{7}{3}$
(c) $a \neq \frac{1}{3}, b=\frac{7}{3}$
(d) $a=\frac{1}{3}, b \neq \frac{7}{3}$

Hints and Solutions

1. (d) $\Delta=\left|\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & a\end{array}\right|=1-3 a$

$$
\Delta_{3}=\left|\begin{array}{ccc}
2 & 1 & 5 \\
1 & -1 & 3 \\
1 & 1 & b
\end{array}\right|=7-3 b
$$

For no solution, $\Delta=0, \Delta_{3} \neq 0$

$$
\begin{aligned}
1-3 a & =0,7-3 b \text { १ } 0 \\
a & =\frac{1}{3}, b \neq \frac{7}{3}
\end{aligned}
$$

2. (c) We have three equations:

$$
2 x+y=4,3 x+2 y=2, x+y=-2
$$

Subtracting first from second equation, we get $x+y=-2$, which is same as the third equation.
Therefore third equation is redundant.
Solving first and second equation, we get $x=6, y=-8$
Hence, there is only one solution for the system of equations.
3. (5) $\Delta=\left|\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & \alpha \\ 2 & -1 & 1\end{array}\right|=0 \Rightarrow \alpha=-2$

$$
\Delta_{2}=\left|\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & -2 \\
\beta & -1 & 1
\end{array}\right|=0 \Rightarrow \beta=7
$$

$$
\Delta_{3}=0 \Rightarrow \beta=7
$$

$$
\alpha+\beta=5
$$

4. (6) $\sum_{k=1}^{n} D_{k}=\left|\begin{array}{ccc}\sum 1 & 2 \sum k & 2 \sum k-\sum 1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$

$$
=\left|\begin{array}{ccc}
n & n(n+1) & n^{2} \\
n & n^{2}+n+2 & n^{2} \\
n & n^{2}+n & n^{2}+n+2
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
0 & -2 & 0 \\
0 & 2 & -n-2 \\
n & n^{2}+n & n^{2}+n+2
\end{array}\right|
$$

$$
=2((-n)(-n-2))
$$

$$
=96
$$

$$
n^{2}+2 n=48
$$

$$
n=6,-8
$$

$$
n=6
$$

5. (50) $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then

$$
A^{2}=\left[\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & b c+d^{2}
\end{array}\right]
$$

For A^{-1} must exist $a d-b c \neq 0$
and

$$
\begin{equation*}
A=A^{-1} \tag{i}
\end{equation*}
$$

$$
\Rightarrow \quad A^{2}=1
$$

$$
\begin{equation*}
\therefore \quad a^{2}+b c=d^{2}+b c=1 \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad b(a+d)=c(a+d)=0 \tag{iii}
\end{equation*}
$$

Case I : When $a=d=0$, then possible values of (b, c) are $(1,1),(-1,1)$ and $(1,-1)$ and $(-1,1)$.
Total four matrices are possible.
Case II : When $a=-d$ then (a, d) be $(1,-1)$ or ($-1,1$).
Then total possible values of (b, c) are

$$
(12+11) \times 2=46
$$

\therefore Total possible matrices $=46+4=50$.
6. (4)
$\Delta=\left|\begin{array}{ccc}p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)!\end{array}\right|$
$=p!\cdot(p+1)!\cdot(p+2)!\left|\begin{array}{lll}1 & (p+1) & (p+1)(p+2) \\ 1 & (p+2) & (p+2)(p+3) \\ 1 & (p+3) & (p+3)(p+4)\end{array}\right|$
$=p!\cdot(p+1)!\cdot(p+2)!\left|\begin{array}{ccc}1 & p+1 & p^{2}+3 p+2 \\ 0 & 1 & 2 p+4 \\ 0 & 1 & 2 p+6\end{array}\right|$
$=2(p!) \cdot((p+1)!) \cdot((p+2)!)$.
$=2(p+1) \cdot(p!)^{2} \cdot((p+2)!)$.
$=2(p+1)^{2} \cdot(p!)^{3} \cdot((p+2)!)$.
\therefore Maximum value of α is 3 and β is 1 .

$$
\therefore \quad \alpha+\beta=4
$$

7. (42)
$\operatorname{det}(A)=\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right| \quad R_{3}!R_{3}+R_{1}$
$\Rightarrow(\alpha+\beta+\gamma)\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ 1 & 1 & 1\end{array}\right|$
$\therefore \operatorname{det}(A)=(\alpha+\beta+\gamma)(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$ Also, det (adj (adj (adj (adj (A)))))

$$
\begin{gathered}
=(\operatorname{det}(A))^{2^{4}}=(\operatorname{det}(A))^{16} \\
\therefore \frac{(\alpha+\beta+\gamma)^{16}(\alpha-\beta)^{16}(\beta-\gamma)^{16}(\gamma-\alpha)^{16}}{(\alpha-\beta)^{16}(\beta-\gamma)(\gamma-\alpha)^{16}}=(4.3)^{16}
\end{gathered}
$$

$\therefore \alpha+\beta+\gamma=12$
$\therefore(\alpha, \beta, \gamma)$ distinct natural triplets

$$
={ }^{11} C_{2}-1-{ }^{3} C_{2}(4)=55-1-12=42
$$

